Publications
My research mainly spans across the topics of Uncertainty-aware ML
(UAI), Explanation in ML(XAI), and Preference Modelling(PM).

17. Strategic Learning with Local Explanations as Feedback
XAI
Kiet Q.H. Vo, Siu Lun Chau, Masahiro Kato, Yixin Wang, Krikamol Muandet
ArXiv, 2025

16. Credal Two-sample Tests of Epistemic Ignorance
UAI
Siu Lun Chau, Antonin Schrab, Arthur Gretton, Dino Sejdinovic, Krikamol Muandet
The International Conference on Artificial Intelligence and Statistics, 2025

15. Highly Parallel Optimisation of Nickel-Catalysed Suzuki Reactions through Automation and Machine Intelligence
UAI
Joshua W. Sin, Siu Lun Chau, Ryan P.Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller
ChemRxiv, 2024

14. Domain Generalisation via Imprecise Learning
UAI
Anurag Singh, Siu Lun Chau, Shahine Bouabid, Krikamol Muandet
(Spotlight) International Conference on Machine Learning (ICML), 2024

13. Causal Strategic Learning with Competitive Selection
XAI
Kiet QH Vo, Muneeb Aadil, Siu Lun Chau, Krikamol Muandet
(Oral) The 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024

12. Collaborative and Explainable Bayesian Optimization
UAI
XAI
PM
Masaki Adachi, Brady Planden, David A. Howey, Krikamol Maundet, Michael A. Osborne, Siu Lun Chau
The International Conference on Artificial Intelligence and Statistics (AISTATS), 2024

11. Towards Trustworthy Machine Learning with Kernels
UAI
XAI
PM
Siu Lun Chau
Ph.D. Thesis, 2023

10. Stochastic Shapley Values for Gaussian Process Models
UAI
XAI
Siu Lun Chau, Krikamol Muandet*, Dino Sejdinovic*
(Spotlight) Conference on Neural Information Processing Systems (NeurIPS), 2023

9. Gated Domain Units for Multi-source Domain Generalization
UAI
Simon Föll*, Alina Dubatovka*, Eugen Ernst†, Siu Lun Chau†, Martin Maritsch, Patrik Okanovic, Gudrun Thäter, Joachim M Buhmann, Felix Wortmann,Krikamol Muandet
Transactions on Machine Learning Research, 2023

8. Spectral ranking with covariates
PM
Siu Lun Chau, Mihai Cucuringu, Dino Sejdinovic
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2022

7. RKHS-SHAP: Shapley Values for Kernel Methods
XAI
Siu Lun Chau, Robert Hu, Javier Gonzalez, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2022

6. Explaining Preferences with Shapley Values
XAI
PM
Hu Robert*, Siu Lun Chau*, Jaime Ferrando Huertas, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2022

5. Learning Inconsistent Preferences with Gaussian Processes
UAI
PM
Siu Lun Chau, Javier González, Dino Sejdinovic
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022

4. Giga-scale Kernel Matrix Vector Multiplication on GPU
UAI
Robert Hu, Siu Lun Chau, Dino Sejdinovic, Joan Alexis Glaunès
Conference on Neural Information Processing Systems (NeurIPS), 2022

3. Kernel-based graph learning from smooth signals: A functional viewpoint
PM
Xingyue Pu, Siu Lun Chau, Xiaowen Dong, Dino Sejdinovic
IEEE Transactions on Signal and Information Processing over Networks, 2021

2. Deconditional Downscaling with Gaussian Processes
UAI
Siu Lun Chau*, Shahine Bouabid*, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2021

1. Uncertainty Quantification for Causal Data Fusion
UAI
Siu Lun Chau*, Jean-François Ton*, Javier González, Yee Whye Teh, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2021