Publications

My research mainly spans across the topics of Uncertainty-aware ML (UAI), Explanation in ML(XAI), and Preference Modelling(PM).


Thumbnail 16. Credal Two-sample Tests of Epistemic Ignorance UAI
Siu Lun Chau, Antonin Schrab, Arthur Gretton, Dino Sejdinovic, Krikamol Muandet
arXiv, 2024


Thumbnail 15. Highly Parallel Optimisation of Nickel-Catalysed Suzuki Reactions through Automation and Machine Intelligence UAI
Joshua W. Sin, Siu Lun Chau, Ryan P.Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller
ChemRxiv, 2024


Thumbnail 14. Domain Generalisation via Imprecise Learning UAI
Anurag Singh, Siu Lun Chau, Shahine Bouabid, Krikamol Muandet
(Spotlight) International Conference on Machine Learning (ICML), 2024


Thumbnail 13. Causal Strategic Learning with Competitive Selection XAI
Kiet QH Vo, Muneeb Aadil, Siu Lun Chau, Krikamol Muandet
(Oral) The 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024


Thumbnail 12. Collaborative and Explainable Bayesian Optimization UAI XAI PM
Masaki Adachi, Brady Planden, David A. Howey, Krikamol Maundet, Michael A. Osborne, Siu Lun Chau
The International Conference on Artificial Intelligence and Statistics (AISTATS), 2024


Thumbnail 11. Towards Trustworthy Machine Learning with Kernels UAI XAI PM
Siu Lun Chau
Ph.D. Thesis, 2023


Thumbnail 10. Stochastic Shapley Values for Gaussian Process Models UAI XAI
Siu Lun Chau, Krikamol Muandet*, Dino Sejdinovic*
(Spotlight) Conference on Neural Information Processing Systems (NeurIPS), 2023


Thumbnail 9. Gated Domain Units for Multi-source Domain Generalization UAI
Simon Föll*, Alina Dubatovka*, Eugen Ernst†, Siu Lun Chau†, Martin Maritsch, Patrik Okanovic, Gudrun Thäter, Joachim M Buhmann, Felix Wortmann,Krikamol Muandet
Transactions on Machine Learning Research, 2023


Thumbnail 8. Spectral ranking with covariates PM
Siu Lun Chau, Mihai Cucuringu, Dino Sejdinovic
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2022


Thumbnail 7. RKHS-SHAP: Shapley Values for Kernel Methods XAI
Siu Lun Chau, Robert Hu, Javier Gonzalez, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2022


Thumbnail 6. Explaining Preferences with Shapley Values XAI PM
Hu Robert*, Siu Lun Chau*, Jaime Ferrando Huertas, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2022


Thumbnail 5. Learning Inconsistent Preferences with Gaussian Processes UAI PM
Siu Lun Chau, Javier González, Dino Sejdinovic
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022


Thumbnail 4. Giga-scale Kernel Matrix Vector Multiplication on GPU UAI
Robert Hu, Siu Lun Chau, Dino Sejdinovic, Joan Alexis Glaunès
Conference on Neural Information Processing Systems (NeurIPS), 2022


Thumbnail 3. Kernel-based graph learning from smooth signals: A functional viewpoint PM
Xingyue Pu, Siu Lun Chau, Xiaowen Dong, Dino Sejdinovic
IEEE Transactions on Signal and Information Processing over Networks, 2021


Thumbnail 2. Deconditional Downscaling with Gaussian Processes UAI
Siu Lun Chau*, Shahine Bouabid*, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2021


Thumbnail 1. Uncertainty Quantification for Causal Data Fusion UAI
Siu Lun Chau*, Jean-François Ton*, Javier González, Yee Whye Teh, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2021