Publications


Thumbnail 19. Truthful Elicitation of Imprecise Forecast
Anurag Singh, Siu Lun Chau, Krikamol Muandet
ArXiv, 2025


Thumbnail 18. Bayesian Optimization for Building Social-Influence-Free Consensus
Masaki Adachi, Siu Lun Chau, Wenjie Xu, Anurag Singh, Mike Osborne, Krikamol Muandet
ArXiv, 2025


Thumbnail 17. Strategic Learning with Local Explanations as Feedback
Kiet Q.H. Vo, Siu Lun Chau, Masahiro Kato, Yixin Wang, Krikamol Muandet
ArXiv, 2025


Thumbnail 16. Credal Two-sample Tests of Epistemic Ignorance
Siu Lun Chau, Antonin Schrab, Arthur Gretton, Dino Sejdinovic, Krikamol Muandet
The International Conference on Artificial Intelligence and Statistics, 2025


Thumbnail 15. Highly Parallel Optimisation of Nickel-Catalysed Suzuki Reactions through Automation and Machine Intelligence
Joshua W. Sin, Siu Lun Chau, Ryan P.Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller
ChemRxiv, 2024


Thumbnail 14. Domain Generalisation via Imprecise Learning
Anurag Singh, Siu Lun Chau, Shahine Bouabid, Krikamol Muandet
(Spotlight) International Conference on Machine Learning (ICML), 2024


Thumbnail 13. Causal Strategic Learning with Competitive Selection
Kiet QH Vo, Muneeb Aadil, Siu Lun Chau, Krikamol Muandet
(Oral) The 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024


Thumbnail 12. Collaborative and Explainable Bayesian Optimization
Masaki Adachi, Brady Planden, David A. Howey, Krikamol Maundet, Michael A. Osborne, Siu Lun Chau
The International Conference on Artificial Intelligence and Statistics (AISTATS), 2024


Thumbnail 11. Towards Trustworthy Machine Learning with Kernels
Siu Lun Chau
Ph.D. Thesis, 2023


Thumbnail 10. Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau, Krikamol Muandet*, Dino Sejdinovic*
(Spotlight) Conference on Neural Information Processing Systems (NeurIPS), 2023


Thumbnail 9. Gated Domain Units for Multi-source Domain Generalization
Simon Föll*, Alina Dubatovka*, Eugen Ernst†, Siu Lun Chau†, Martin Maritsch, Patrik Okanovic, Gudrun Thäter, Joachim M Buhmann, Felix Wortmann,Krikamol Muandet
Transactions on Machine Learning Research, 2023


Thumbnail 8. Spectral ranking with covariates
Siu Lun Chau, Mihai Cucuringu, Dino Sejdinovic
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2022


Thumbnail 7. RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau, Robert Hu, Javier Gonzalez, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2022


Thumbnail 6. Explaining Preferences with Shapley Values
Hu Robert*, Siu Lun Chau*, Jaime Ferrando Huertas, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2022


Thumbnail 5. Learning Inconsistent Preferences with Gaussian Processes
Siu Lun Chau, Javier González, Dino Sejdinovic
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022


Thumbnail 4. Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu, Siu Lun Chau, Dino Sejdinovic, Joan Alexis Glaunès
Conference on Neural Information Processing Systems (NeurIPS), 2022


Thumbnail 3. Kernel-based graph learning from smooth signals: A functional viewpoint
Xingyue Pu, Siu Lun Chau, Xiaowen Dong, Dino Sejdinovic
IEEE Transactions on Signal and Information Processing over Networks, 2021


Thumbnail 2. Deconditional Downscaling with Gaussian Processes
Siu Lun Chau*, Shahine Bouabid*, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2021


Thumbnail 1. Uncertainty Quantification for Causal Data Fusion
Siu Lun Chau*, Jean-François Ton*, Javier González, Yee Whye Teh, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2021