Publications

22. Integral Imprecise Probability Metrics
Siu Lun Chau, Michele Caprio, Krikamol Muandet
Arxiv, 2025

21. Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods
Majid Mohammadi, Siu Lun Chau, Krikamol Muandet
Arxiv, 2025

20. Truthful Elicitation of Imprecise Forecast
Anurag Singh, Siu Lun Chau, Krikamol Muandet
(Oral) Conference on Uncertainty in Artificial Intelligence (UAI), 2025

19. Bayesian Optimization for Building Social-Influence-Free Consensus
Masaki Adachi, Siu Lun Chau, Wenjie Xu, Anurag Singh, Mike Osborne, Krikamol Muandet
ArXiv, 2025

18. Strategic Learning with Local Explanations as Feedback
Kiet Q.H. Vo, Siu Lun Chau, Masahiro Kato, Yixin Wang, Krikamol Muandet
ArXiv, 2025

17. Kernel Quantile Embedding and Associated Probability Metircs
Masha Naslidnyk, Siu Lun Chau, Francois-Xavier Briol, Krikamol Muandet
International Conference on Machine Learning (ICML), 2025

16. Credal Two-sample Tests of Epistemic Ignorance
Siu Lun Chau, Antonin Schrab, Arthur Gretton, Dino Sejdinovic, Krikamol Muandet
The International Conference on Artificial Intelligence and Statistics, 2025

15. Highly Parallel Optimisation of Nickel-Catalysed Suzuki Reactions through Automation and Machine Intelligence
Joshua W. Sin, Siu Lun Chau, Ryan P.Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller
Nature Communications, 2025

14. Domain Generalisation via Imprecise Learning
Anurag Singh, Siu Lun Chau, Shahine Bouabid, Krikamol Muandet
(Spotlight) International Conference on Machine Learning (ICML), 2024

13. Causal Strategic Learning with Competitive Selection
Kiet QH Vo, Muneeb Aadil, Siu Lun Chau, Krikamol Muandet
(Oral) The 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024

12. Collaborative and Explainable Bayesian Optimization
Masaki Adachi, Brady Planden, David A. Howey, Krikamol Maundet, Michael A. Osborne, Siu Lun Chau
The International Conference on Artificial Intelligence and Statistics (AISTATS), 2024

11. Towards Trustworthy Machine Learning with Kernels
Siu Lun Chau
Ph.D. Thesis, 2023

10. Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau, Krikamol Muandet*, Dino Sejdinovic*
(Spotlight) Conference on Neural Information Processing Systems (NeurIPS), 2023

9. Gated Domain Units for Multi-source Domain Generalization
Simon Föll*, Alina Dubatovka*, Eugen Ernst†, Siu Lun Chau†, Martin Maritsch, Patrik Okanovic, Gudrun Thäter, Joachim M Buhmann, Felix Wortmann,Krikamol Muandet
Transactions on Machine Learning Research, 2023

8. Spectral ranking with covariates
Siu Lun Chau, Mihai Cucuringu, Dino Sejdinovic
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2022

7. RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau, Robert Hu, Javier Gonzalez, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2022

6. Explaining Preferences with Shapley Values
Hu Robert*, Siu Lun Chau*, Jaime Ferrando Huertas, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2022

5. Learning Inconsistent Preferences with Gaussian Processes
Siu Lun Chau, Javier González, Dino Sejdinovic
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022

4. Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu, Siu Lun Chau, Dino Sejdinovic, Joan Alexis Glaunès
Conference on Neural Information Processing Systems (NeurIPS), 2022

3. Deconditional Downscaling with Gaussian Processes
Siu Lun Chau*, Shahine Bouabid*, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2021

2. Uncertainty Quantification for Causal Data Fusion
Siu Lun Chau*, Jean-François Ton*, Javier González, Yee Whye Teh, Dino Sejdinovic
Conference on Neural Information Processing Systems (NeurIPS), 2021

1. Kernel-based graph learning from smooth signals: A functional viewpoint
Xingyue Pu, Siu Lun Chau, Xiaowen Dong, Dino Sejdinovic
IEEE Transactions on Signal and Information Processing over Networks, 2021