
Research Statement: From Statistical to Epistemic Machine Learning

Siu Lun Chau
College of Computing & Data Science, Nanyang Technological University, Singapore

Abstract—I aim to understand how to design uncertainty-aware
intelligent systems that can recognise and communicate the
limits of their knowledge. Achieving this goal requires princi-
pled approaches to modelling two fundamentally different types
of uncertainty. The first, statistical (or aleatoric) uncertainty,
arises from inherent stochasticity in the data-generating process
and is typically captured using probability distributions. The
second, epistemic uncertainty, pertains to the state of knowl-
edge and arises from incomplete information, limited data,
unjustified assumptions, or structural ambiguity. While statis-
tical machine learning—concerned primarily with modelling
aleatoric uncertainty—is a well-established and mature field,
the systematic treatment of epistemic uncertainty in machine
learning has received comparatively less attention. However,
with the growing deployment of machine learning models in
safety-critical domains such as healthcare, law, and autonomous
systems, addressing epistemic uncertainty is becoming increas-
ingly urgent. In such settings, the ability of a system to recognise
and communicate what it does not know is just as important as
making accurate predictions.

My research journey began by addressing challenges in kernel
methods and Gaussian processes—two foundational tools in
modern statistical machine learning. Over time, my focus has
shifted toward designing algorithms that relax overly stringent
or unjustified modelling assumptions, incorporate imprecise
and ambiguous information, and support principled decision-
making in the presence of unresolved conflict or uncertainty.
To this end, I find the framework of imprecise probabilities,
which generalises classical probability theory to accommodate
indecision, ambiguity, and partial knowledge, both natural and
powerful for building the next generation of uncertainty-aware
systems. In Section 1, I will discuss my scientific achievements
in the area of statistical and epistemic machine learning, followed
by my vision for future research in Section 2.

1 Scientific Achievements
My research endeavour has led to several scientific contributions
at the flagship conferences and journals in machine learning
(NeurIPS [1–6], ICML [7, 8], UAI [9], AISTATS [10–12],
AAAI [13], ECML-PKDD [14], IEEE [15], TMLR [16], Nature
Communications [17]), as well as several preprints [18–21]. In
Sections 1.1 and 1.2, I outline my research contributions in
statistical and epistemic machine learning, respectively.

1.1 Statistical Machine Learning with Kernels
Statistical machine learning (StatML) can be broadly understood
as the study of inference and prediction algorithms that reason

statistically about probability distributions, which we have
access only through independent and identically distributed
(i.i.d.) samples. An important challenge in this setting is to
represent and manipulate distributions in a data-driven and
nonparametric manner to avoid model mispecification. Kernel
methods—particularly kernel mean embedding (KMEs) ([22,
23]— provide such functionality by embedding distributions
into a reproducing kernel Hilbert space, which can be estimated
through samples only.

Let X denote the input space, which may be ℝ𝑑 or more
complex domains such as images, strings, or graphs, provided
a positive definite kernel 𝑘 : X × X → ℝ can be defined. The
core idea of kernel methods is to perform linear operations
in a high-dimensional feature space that implicitly encode
nonlinear transformations of the original inputs. This leads
to highly flexible models that remain tractable with standard
linear algebraic operations. In particular, due to the reproducing
property of RKHSs H𝑘 , any 𝑓 ∈ H𝑘 and 𝑥 ∈ X satisfies 𝑓 (𝑥) =
⟨ 𝑓 , 𝑘 (𝑥, ·)⟩, which underpins the computational tractability and
theoretical elegance of kernel methods. Furthermore, consider
𝑋 some random variable in X with distribution 𝑃(𝑋), the kernel
mean embedding

𝑃(𝑋) ↦→ 𝜇𝑃 := 𝔼𝑃 [𝑘 (𝑋, ·)] ∈ H𝑘

embeds the distribution 𝑃(𝑋) intoH𝑘 , which can be consistently
estimated through empirical averages �̂�𝑃 = 1

𝑛

∑𝑛
𝑖=1 𝑘 (𝑥𝑖 , ·). For

a broad class of kernels, known as characteristic kernels, the
mapping is injective—that is, 𝜇𝑃 = 𝜇𝑄 if and only if 𝑃 = 𝑄.
This property provides a powerful foundation for the design of
various discrepancies such as maximum mean discrepancies
(MMD) [24] ∥𝜇𝑃 − 𝜇𝑄 ∥H𝑘

and Hilbert space independence
criterion (HSIC) [25] ∥𝜇𝑃×𝑄 − 𝜇𝑃 ⊗ 𝜇𝑄 ∥H𝑘⊗Hℓ

.

On the other hand, kernels also play a critical role in Bayesian
ML as covariance functions in Gaussian processes (GPs) [26].
GPs follow the Bayesian learning procedure: first, we place a
prior 𝑃( 𝑓 ) over functions of interest, and upon conditioning on
observed data 𝐷 via our specified likelihood 𝑃(𝐷; 𝑓 ), yield a
posterior distribution 𝑃( 𝑓 | 𝐷) over functions. This allows us to
model a problem at hand probabilistically, and the posterior over
functions naturally captures the epistemic uncertainty during
the learning procedure. For many problems, this posterior
covariance is available in closed form:

𝜅𝐷 (𝑥, 𝑥′) = 𝑘 (𝑥, 𝑥′) − 𝑘 (𝑥, 𝑋𝐷) (𝐾𝑋𝐷𝑋𝐷
+ 𝜎𝐼)−1𝑘 (𝑋𝐷 , 𝑥

′),

leading to important breakthroughs in applications such as
probabilistic numerics [27], Bayesian optimisations [28], and
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active learning [29]. GPs and kernel methods share deep equiva-
lence in various cases [30]. For example, kernel ridge regressor
matches the posterior mean in GP regression problems, despite
being derived from entirely different principles—one rooted
in a frequentist regularised loss optimisation perspective, the
other in Bayesian inference. Given their deep connection, it is
natural to ask: Can we leverage GP formulation to learn distribu-
tional representations in RKHSs? Doing so allows us to bridge
the two fields further and leverage the best of both worlds—
enjoy probabilistic modelling while manipulating distributional
representations.

Indeed, Flaxman et al. [31] took a first step in this direction
and proposed a GP-based approach to estimate KMEs 𝜇𝑃 , later
leading to a Bayesian kernel two-sample test [32]. Nonetheless,
in scenarios where modelling relationships across variables
is important—such as in causal inference [33], dynamical
systems [22], reinforcement learning [34]—embedding the
marginal distribution as in KME does not suffice. Conditional
mean embedding (CME) [35, 36] instead embed the conditional
distributions 𝑃(𝑌 | 𝑋 = 𝑥) ↦→ 𝜇𝑌 |𝑋=𝑥 ∈ Hℓ for some positive
definite kernel ℓ : Y × Y → ℝ. While CMEs are defined
analogously to KMEs, their estimation requires a different
strategy as we mostly only observe paired samples {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1.
Specifically, estimating the conditioning embedding map �̂�𝑌 |𝑋 :
𝑥 ↦→ 𝜇𝑌 |𝑋=𝑥 is equivalent to solving a vector-valued kernel
ridge regression problem [37], leading to

�̂�𝑌 |𝑋 (𝑥) = 𝑘 (𝑥, 𝑋) (𝐾𝑋𝑋 + 𝑛𝜆𝐼)−1ℓ(𝑌, ·) ∈ Hℓ .

Research contributions to Kernel methods ∩ GPs

Bayesian CME. In [1], we proposed the first GP-based CME es-
timation procedure based on vector-valued Gaussian processes,
leading to a Bayesian Conditional Mean Embedding model. By
treating CME as a bi-input function �̄�𝑌 |𝑋 (𝑥, 𝑦) =: 𝜇𝑌 |𝑋=𝑥 (𝑦),
we can place a GP prior 𝜇𝑔𝑝 ∼ GP(0, 𝑘 ⊗ 𝑟ℓ) over �̄�𝑌 |𝑋. How-
ever, as [38] has shown that sample paths of GPs fall outside
the RKHS of their covariance kernel with probability one, extra
care was needed to ensure the posterior distribution over CMEs
𝜇𝑔𝑝 (𝑥, ·) is supported in the intended RKHS Hℓ , leading to
the choice of our nuclear dominant kernel 𝑟ℓ over ℓ [39]. This
framework provides a principled Bayesian approach to learning
distributional embeddings, yielding not only point estimates but
also posterior covariances. In particular the posterior covariance
𝜅((𝑥, 𝑦), (𝑥′, 𝑦′)) =

𝑘𝑥𝑥′𝑟𝑦𝑦′ − (𝑘𝑥𝑋 (𝐾𝑋𝑋 + 𝑛𝜆𝐼)−1𝑘𝑋𝑥′ ) (𝑟𝑦𝑌𝑅−1
𝑌𝑌𝑟𝑌𝑦′ ).

quantifies estimation uncertainty around CMEs and proves
valuable in downstream tasks. We demonstrated its effectiveness
in a causal Bayesian optimisation [40] setting, where access
to posterior uncertainty over CMEs enabled optimal treatment
selection in a causal data fusion problem.

Deconditional GP. Besides embedding conditional distribu-
tions, kernel embeddings also allow for “reversing” conditional
expectations and can solve a challenging inverse problem: Given
observations that are themselves aggregates (conditional expec-
tations), e.g. observe (𝑥𝑖 , 𝑧𝑖)𝑛𝑖=1 such that 𝑧𝑖 = 𝔼[ 𝑓 (𝑌 ) | 𝑋 = 𝑥𝑖],

can I recover 𝑓 and ideally in a probabilistic manner? These
problems frequently occur in climate science, where statisti-
cal downscaling is required to enhance low-resolution images,
and opinion pooling, where opinions are collected in a coarse
manner due to cost constraints. To tackle this, we first intro-
duced the Conditional Mean Processes, which allows us to
model 𝑔(𝑥) := 𝔼[ 𝑓 (𝑌 ) | 𝑋 = 𝑥] as a GP with covariance
based on the CME 𝜇𝑌 |𝑋=𝑥 . Specifically, for 𝑓 ∼ GP(0, ℓ), we
have 𝑔 ∼ GP(0, 𝜅) with 𝜅(𝑥, 𝑥′) = 𝜇⊤

𝑌 |𝑋=𝑥𝜇𝑌 |𝑋=𝑥′ . Denote
the conditional expectations observation as z, then we show
that through inter-domain GP formulation [41], we can recover
a posterior 𝑃( 𝑓 | z), in which the posterior mean coincides
with the frequentist deconditional mean function proposed in
[42]. I further showed that for the frequentist deconditional
mean embedding, the learning procedure can be expressed as a
two-staged vector-valued reconstruction problem and through
that established a minimax optimal convergence rate under mild
assumptions.

My line of work in learning distribution representations through
a Bayesian manner inspired further developments in Bayesian
optimisations [43], probabilistic numerics [44], sequential
decision-making [45, 46], and uncertainty quantification for
causal inference [47].

Research contribution to Kernel methods

Flexible models for graph and preference learning. As
mentioned, the reproducing property and the representer the-
orem [48] make kernel methods a powerful and versatile tool
for modelling a wide range of learning problems. In [15], my
colleagues and I tackled the graph topology learning problem
by modelling latent graph signals as functions in an RKHS.
This approach relaxes the classical i.i.d. assumption required
for graph signals and enables graph learning under challenging
conditions such as heavy noise, missing values, and complex
dependencies. In a similar vein, in [14],my colleagues and I
proposed modelling latent skill vectors in ranking problems
as RKHS functions, leading to a new class of nonparamet-
ric spectral ranking models. These models draw on seriation
techniques[49], singular value decomposition (SVD) [50], and
canonical correlation analysis [51], and crucially, support the
incorporation of player covariates for rank prediction—a feature
not available in standard spectral ranking methods.

Competitive alternative to kernel means. Besides building
flexible kernel-based predictors, in [8] my colleagues and I chal-
lenged the conventional use of kernel means

∫
𝑘 (𝑋, ·)𝑑𝑃(𝑋)

for distributional representations. Instead, we propose to con-
sider directional quantiles in Hilbert spaces [52], motivated by
the fact that quantiles in general encapsulate more information
about the distribution than the mean alone. Let 𝜌𝛼

𝑢#𝑃𝑢(𝑋) be
the 𝛼-quantile of the real-valued function distributed according
to 𝑃(𝑢(𝑋)), then we define the kernel quantile embeddings
(KQEs) as the mapping

𝑃 ↦→ {𝜌𝛼𝑢#𝑃𝑢(𝑋) : 𝛼 ∈ [0, 1], 𝑢 ∈ H𝑘 , ∥𝑢∥H𝑘
= 1}.

These KQEs naturally defines a family a statistical distances
that (i) are valid probability metrics under weaker conditions
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Figure 1: My research in statML with kernels revolves around two distinct yet deeply connected fields: (a) The conditional mean
embedding 𝜇𝑌 |𝑋=𝑥 ↦→ 𝔼[ℓ(𝑌, ·) | 𝑋 = 𝑥]. (b, left) Samples from a Gaussian process prior; (b, right) Samples from a Gaussian
process posterior upon conditioning on observations. Larger fluctuations can be seen in unobserved regions.

on the kernel than those required for KMEs, (ii) recover a
kernelised analogue of the sliced Wasserstein distance, and
(iii) admit efficient estimators with near-linear computational
cost, in contrast to the quadratic cost of KME-based metrics.
Our findings demonstrate the potential of KQEs as a powerful
alternative to traditional mean-based representations.

Explainable kernel methods. While kernel methods provide
flexible nonparametric models, their black-box natures hinder
their use in critical applications. Inspired by the application of
game theoretic concepts in feature attribution problems [53],
in [3], my colleagues and I proposed the first RKHS-SHAP
algorithm that computes Shapley value for kernel methods that
provides better statistical performance than standard model-
agnostic approaches. Specifically, given a cooperative game
( [𝑑], 𝜈) where [𝑑] = {1, . . . , 𝑑} is the feature indices and
𝜈 : 2𝑑 → ℝ measures the payoff of feature subgroups, for a
predictive function 𝑓 and input 𝑥, the Shapley value 𝜙𝑥, 𝑗 ( 𝑓 ) for
feature 𝑗 in 𝑥, which quantifies its contribution to the prediction
𝑓 (𝑥), can be computed as:

𝜙𝑥, 𝑗 ( 𝑓 ) =
∑︁

𝑆⊆[𝑑 ]\{ 𝑗 }
𝑐 |𝑆 | [𝜈(𝑆 ∪ 𝑖) − 𝜈(𝑆)],

for some constant terms 𝑐 |𝑆 | . Shapley values are uniquely char-
acterised by three desirable axioms—efficiency, symmetry, and
linearity—which have made them a central tool in explainable
AI. Specifically, we showed that the commonly used value
function 𝜈(𝑆) = 𝔼[ 𝑓 (𝑋) | 𝑋𝑆 = 𝑥𝑆], which measures the aver-
age prediction when features in 𝑆𝑐 are integrated out, can be
efficiently estimated through CMEs, as 𝜈(𝑆) = ⟨ 𝑓 , 𝜇𝑋 |𝑋𝑆=𝑥𝑆 ⟩.
This circumvents the need for density estimation and avoids
model specification. In [4], my colleagues and I extended
RKHS-SHAP to the preference learning setting, introducing
Pref-SHAP, the first method to explain nonparametric pref-
erence functions using Shapley values. While RKHS-SHAP
addresses statistical efficiency, in our follow-up work [20], my
colleagues and I focused on improving the computational effi-
ciency of Shapley value computation for kernel methods. By
exploiting the decompositional structure of product kernels, we
introduced the PKeX-Shapley (Product Kernel Exact Shapley)
algorithm, which reduces the computational cost of computing
exact Shapley from 𝑂 (2𝑑) to 𝑂 (𝑑2). This remarkable speed
up makes our algorithms not only axiomatically driven, but

also computationally tractable for industry practices. Together,
RKHS-SHAP and PKeX-Shapley form a toolkit for performing
interpretable, kernel-based statistical inference—bridging the
gap between theoretical rigour and practical interpretability in
modern machine learning.

Research contributions to GPs

GP for preference learning. I have also made substantial
contributions to the field of Gaussian processes (GPs). In
[10], my colleagues and I revisited the classical work of Chu
and Ghahramani [54] on preference learning with GPs and
critically examined their assumption that preference transitivity
must be imposed. We introduced a generalised preferential GP
model that can model general preference relationships beyond
transitivity. This result establishes the universal approximation
property of our model and provides a solid theoretical foundation
for learning flexible, non-transitive preference structures within
the GP framework.

Speeding up GP computation. GPs are often considered to be
computationally heavy due to various matrix-vector multipli-
cation procedures. To address this, in [5], my colleagues and I
introduced the Faster-Fast and Free Memory Method (𝐹3𝑀)
that extends the classical classical Fast Multipole Method [55]
to perform kernel matrix vector multiplication, a core operation
for GP (and kernel methods), on a single GPU for tall and skinny
data (𝑛 ∼ 109, 𝑑 ≤ 7) in under a minute with user-specified
error tolerance, providing enormous speed-up over existing
methods.

Explainable GP and their applications. GPs, like kernel meth-
ods, are inherently black-box models due to their nonparametric
nature. In [6], building on the RKHS-SHAP framework, my
colleagues and I introduced the first SHAP algorithm specifi-
cally tailored for GP models, termed GP-SHAP. Unlike standard
predictive models that return deterministic point estimates, GPs
are fully probabilistic—each prediction 𝑓 (𝑥) is a Gaussian
random variable characterised by both a mean and a variance.
This fundamental distinction requires rethinking how feature
attributions should be computed in the presence of model un-
certainty, leading us to formulate a stochastic cooperative game
framework for probabilistic models and subsequently show how
stochastic Shapley values can be derived and estimated in closed
form for GPs. In [11], my colleagues and I integrated GP-SHAP
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into Bayesian optimisation (BO) and demonstrated how, in con-
junction with a preference learning module, it enables the design
of a collaborative (via preference learning) and explainable (via
GP-SHAP) BO procedure. Beyond enabling individual experts
to express their preferences within a BO procedure, in [21],
my colleagues and I studied a group preferential BO problem,
where the goal is to use BO to facilitate consensus among a
group of experts in a resource-efficient manner. To demon-
strate the real-world impact of these methodologies beyond the
ML community, in [17], my colleagues and I applied BO to
high-throughput chemical reaction optimisation and achieved
state-of-the-art performance, translating cutting-edge modelling
techniques into practical scientific discovery.

1.2 Epistemic Machine Learning with
Imprecise Probabilities

More recently, my research has focused more on epistemic ma-
chine learning (EpiML), which broadly speaking, investigates
how a rational agent should make predictions and decisions
under epistemic uncertainty. Unlike statistical (aleatoric) uncer-
tainty, which arises from inherent randomness in distributions,
epistemic uncertainty stems from a lack of knowledge. This may
be due to limited data, but also includes deeper sources such
as potential distribution shifts, unknown strategic behaviour,
imprecise or misspecified hypothesis spaces, and indeterminate
or conflicting side information. Addressing these challenges re-
quires representations that can meaningfully capture ignorance,
imprecision, and indeterminacy. However, as numerous schol-
ars have argued [56–58], such epistemic uncertainty, rooted
in “not-knowing” rather than randomness, cannot be faithfully
modelled using precise probability measures alone. This calls
for a shift toward alternative uncertainty frameworks, such
as imprecise probabilities, to support cautious yet principled
reasoning under epistemic limitations.

My recent work (see Figure 2) in this direction has centred on
incorporating explicit representations of imprecision into several
foundational aspects of statistical machine learning, including:
(1) prediction, (2) hypothesis testing, (3) belief elicitation, and
(4) the design of probability metrics. The overarching goal of
these efforts is to demonstrate that not only is it more natural and
principled to reason and learn while acknowledging epistemic
uncertainty, but doing so can also lead to practically effective
outcomes. Even when we explicitly acknowledge imprecision,
we can still achieve meaningful performance, showing that the
world does not collapse if we choose to be a bit more cautious,
uncertainty-aware, and epistemically humble.

Learning under potential distribution shifts

In [7], colleagues and I revisited the domain generalisation (DG)
problem through the lens of imprecise probability. DG [59]
concerns learning a model 𝑓 : X → Y from multiple datasets
drawn i.i.d. from distributions 𝑃1, . . . , 𝑃𝑚, such that it performs
reliably on an unseen but related target distribution 𝑃★. Our
contributions are threefold. First, we clarify and disentangle
two key sources of uncertainty in DG: aleatoric uncertainty, due
to limited data within each domain, and epistemic uncertainty,

due to ignorance about 𝑃★. Second, we reinterpret the widely
used convex hull ConvHull(𝑃1, . . . , 𝑃𝑚)—typically motivated
by computational convenience [60, 61]—as a finitely generated
credal set, thus giving DG problem a principled behavioural
foundation rooted in IP. Third, we challenge the conventional
approach of resolving ambiguity prior to learning, i.e., by
selecting some 𝑃′ ∈ C for risk minimisation,

𝑓 ′ = arg min 𝑓 ∈H𝔼𝑃′ [𝐿 ( 𝑓 (𝑋), 𝑌 )]

for some lost function 𝐿. Instead, we argue that such ambiguity
should be preserved during training and only resolved at de-
ployment, based on the practitioner’s preferences, rather than
prematurely by the model developer during training.

To operationalise this, we introduce a new model class: aug-
mented hypothesis functions ℎ : X × 𝛩 → Y, which allow
post-training selection of 𝜃 ∈ 𝛩 to reflect different preferences,
effectively navigating the credal set C. Selecting a particular
𝜃 yields a predictive model ℎ(·, 𝜃) as if one had first chosen 𝜃
(corresponding to a specific 𝑃′ ∈ C) and then trained a model
accordingly. This corresponds to instead

ℎ(·, 𝜃) = arg min 𝑓 ∈H𝔼𝑃 [ 𝜃 ] [𝐿 ( 𝑓 (𝑋), 𝑌 )] .

where for each 𝜃, 𝑃[𝜃] ∈ C. Our proposed learning algorithm,
Imprecise Risk Optimisation (IRO), extends classical Multiple
Gradient Descent Algorithms (MGDA) to accommodate in-
finitely many objectives—one for each distribution in C. Under
mild regularity conditions, we prove that the learned model
ℎ(𝑥, 𝜃) is risk-optimal with respect to the distribution implicitly
selected by 𝜃, as if the ambiguity had been resolved prior to
training. This work demonstrates how principles from IP can
give clarity to ML problems and inform practical algorithms
that respect underlying epistemic uncertainty.

Statistical testing under imprecise hypothesis

In [12], my colleagues and I addressed a longstanding open
problem in imprecise probability: given two sources of am-
biguity—each represented by a finitely generated credal set
constructed from empirical samples at its extreme points—how
can we statistically compare these credal sets, and in what way?

While seminal work by Huber and Strassen [62] and subsequent
research [63, 64] extended the Neyman–Pearson framework to
composite hypotheses of the form 𝐻0 : C0 is true versus 𝐻1 :
C1 is true, our work instead seeks to generalise null hypothesis
testing to explicitly accounting for the epistemic imprecision,
enabling statistical comparison between credal sets derived
from data.

Classical two-sample hypothesis testing typically addresses the
question of whether two distributions are equal, formalised
as 𝐻0 : 𝑃𝑋 = 𝑃𝑌 versus 𝐻1 : 𝑃𝑋 ≠ 𝑃𝑌 . When reasoning
with sets of distributions, such as credal sets, there are richer
notions of comparison, each lending itself to distinct statistical
decision-making tasks. Let C𝑋 := ConvHull(𝑃 (1)

𝑋
, . . . , 𝑃

(ℓ )
𝑋

)
and C𝑌 := ConvHull(𝑃 (1)

𝑌
, . . . , 𝑃

(𝑟 )
𝑌

) denote the credal sets of
interests. Utilising samples drawn from their extreme points, we
propose four types of hypotheses: 1) specification 𝐻0,∈ : 𝑃𝑋 ∈
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Figure 2: My projects in EpiML, which touch upon foundational aspects of machine learning. (a) Supervised learning under
potential distribution shifts: Multiple distributions are observed at training time, how can we leverage and carry over such
imprecision when designing our model ℎ? (b) Statistical testing under imprecise hypothesis: Classical null hypothesis testing
concerns whether 𝑃𝑋=𝑃𝑌 or not, but when ambiguity arises in observations, we need to instead reason with imprecise hypotheses
and compare credal sets instead. (c) Truthful elicitation under indeterminate forecasters: Proper scoring rules for precise
forecaster holding 𝑃 as belief are well-studied, but what if our forecaster is indeterminate? Can there still be a proper elicitation
procedure? (d) Metrics for imprecise probabilities: Probability metrics are well studied, but what if our probability assessments
are imprecisely specified? How to quantify that?

C𝑌 , 2) inclusion 𝐻0,⊆ : C𝑋 ⊆ C𝑌 , 3) equality 𝐻0,= : C𝑋 = C𝑌 ,
and 4) plausibility 𝐻0,∩ : C𝑋 ∩ C𝑌 ≠ ∅. Specification test
can be used for credal set calibration problems [65], and the
inclusion test can be used for uncertainty comparison. Equality
test can be used to detect any differences in epistemic uncertainty
after, e.g., a medical treatment, and plausibility test provides a
distributionally robust two-sample testing procedure.

Our contribution goes beyond proposing four meaningful hy-
potheses for comparing credal sets—we also develop a practical,
non-parametric, statistically valid testing procedure to test them.
Building on advances in kernel two-sample testing [66], a
powerful class of non-parametric methods, we adapt these
techniques to the imprecise probabilistic setting to enable the
comparison of epistemic uncertainty. Crucially, kernel methods
naturally accommodate structured data types such as images and
sequences, making our testing procedures broadly applicable
beyond conventional tabular data. For each test, we establish
asymptotic Type I error control, ensuring that the false discovery
rate remains below the chosen significance level. Moreover, we
prove that each test achieves asymptotic consistency, attaining
zero Type II error against any fixed alternative hypothesis in the
limit.

Truthful elicitation under indeterminate forecasters

Building on our work in imprecise prediction and hypothe-
sis testing, in [9], my colleagues and I address the problem
of truthful information elicitation—a foundational challenge
in mechanism design with growing importance in machine
learning, particularly through its connection to proper scoring
mechanisms [67]. We ask: How can we design scoring mecha-
nisms that incentivise agents who face ambiguity to truthfully
report their imprecise forecasts, for example, in the form of a
credal set of probabilistic predictions? This problem is particu-
larly challenging due to a series of impossibility results [68, 69],
which demonstrate that, unlike in the precise case, no determin-
istic scoring rule can strictly properly elicit imprecise beliefs.
Nonetheless, we show that by explicitly linking elicitation to
downstream decision-making, through the actions of a decision-

maker responding to the forecast, truthful elicitation becomes
achievable. Specifically, we introduce a new class of randomised
strictly proper scoring rules for imprecise forecasters, which
provably overcome existing impossibility results and ensure
truthful reporting of credal sets.

Metrics for imprecise probabilities

In [18], my colleagues and I studied the problem of develop-
ing metrics for IP models. Probability metrics are central to
ML tasks like prediction and generation, as they are typically
framed as minimising discrepancies between target and model
distributions. Various classes of probability metrics have been
widely studied, such as 𝜙-divergences [70, 71] and Bregman
divergences [72, 73], their generalisation to IP models has been
quite limited. Nonetheless, a well-defined and computationally
efficient imprecise probability metric could lead to a principled
approach to incorporating ambiguity and epistemic uncertainty
into a broad range of ML problems, enabling models that reason
more robustly under imprecision.

Motivated by this, my colleagues and I focused on the broad
class of Integral Probability Metrics (IPMs) [74] and showed
that the Choquet integral [75] enables their extension from
probability measures to capacities—one of the most general
classes of IP models. We introduced the resulting family of
metrics as the Integral Imprecise Probability Metrics (IIPM),
defined as

IIPMF (𝜈, 𝜇) := sup
𝑓 ∈F

{���� c
∫

𝑓 𝑑𝜈 − c
∫

𝑓 𝑑𝜇

����} ,
where 𝜈, 𝜇 are two capacities, F some function class, and c

∫
denotes the Choquet integral [76]. Conditions on F under which
IIPMF metrises the weak convergence of capacities in the sense
of [77] were also investigated.

To illustrate the flexibility of the framework, we instantiated
it with lower probabilities and demonstrated how different
choices of F yield novel metrics for IP models. For instance,
taking F as the class of bounded Lipschitz functions recovers
a lower Dudley metric, while choosing indicator functions
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over measurable events gives a lower total variation distance.
Besides comparing distinct uncertainty models, we showed that
by measuring the discrepancies between an IP model with its
conjugate yields a new class of epistemic uncertainty quantifiers,
which we call Maximum Mean Imprecision (MMI), illustrating
with a lower probability,

MMIF (𝑃) := IIPMF (𝑃, 𝑃).

We also proved that MMIF satisfies core desiderata for uncer-
tainty quantification [78–81]. Furthermore, we showed that for
the lower total variation function class F𝑇𝑉 , MMIF𝑇𝑉

admits
a tight linear-time computable upper bound. In experiments
on selective classification [82], we demonstrated that our ap-
proach achieves comparable performance to the Generalised
Hartley measure, while requiring only linear-time computation,
instead of exponential time. This makes our method scalable to
high-cardinality classification tasks such as CIFAR-100 [83],
enabling efficient quantification of credal uncertainty in large-
scale settings.

2 Vision for future research
Despite remarkable advances in AI, particularly in generative
models and large language models, a critical gap remains in the
ability of current systems to effectively handle uncertainty and
generalise beyond their training data. One plausible path toward
building ever more powerful intelligent systems is to continue
investing in computational efficiency and scale—training in-
creasingly large models on ever-expanding datasets. While this
direction has yielded impressive results and substantial prac-
tical benefits, many argue that such models primarily excel at
memorisation, rather than genuine understanding or reasoning.

An alternative—and, in my view, more natural—route is to
fundamentally rethink how we design learning architectures and
theories, with a focus on enabling models to be honest about
what they do not know. This means developing AI systems that
can recognise the limits of their knowledge, explicitly represent
uncertainty, and make decisions accordingly. Such epistemically
aware models offer a principled foundation for building AI that
is not only powerful but also reliable, interpretable, and aligned
with the complexities of the real world.

To advance this goal, there are a few research questions I would
love to tackle in the coming years:

1. Where does epistemic uncertainty come from, and how
can it be validated? Information cannot be created from noth-
ing—and the same applies to epistemic uncertainty. In some
problems, such as learning under multiple distributions or
conflicting objectives, epistemic uncertainty naturally arises
from structural ambiguity. However, in standard supervised
learning—where a model is trained on a given dataset—it may
appear that epistemic variability is introduced arbitrarily. In
Bayesian machine learning, uncertainty stems from a prior over
model parameters, which is updated via Bayes’ rule to yield a
posterior that reflects parameter uncertainty given the data. In
ensemble methods, epistemic variation arises from differences

in model initialisation, training subsets, or architectural choices.
Some approaches [84] introduce selection criteria to discard
implausible models from the ensemble. Evidential methods,
by contrast, attempt to learn second-order uncertainty through
optimisation—but as shown by Bengs and Waegeman [85],
such methods lack axiomatic justification.

These diverse approaches all attempt to encode epistemic
uncertainty—but how can we assess their quality? Which
sources of variation are most meaningful for decision-making?
Do they truly enable systems to report what they do not know?
A careful analysis of these questions may help clarify and
unify the various mechanisms currently used to make machine
learning models epistemically aware.

2. How to make decisions under irreducible epistemic uncer-
tainty? Epistemic uncertainty is often understood as uncertainty
that could, in principle, be reduced through the acquisition of
additional information. However, I argue that certain forms of
uncertainty are fundamentally irreducible, even in the limit of
unlimited “data.” One example is the generalisation problem in
machine learning: no matter how much data we collect from one
distribution, it may provide no insight into another, particularly
if that other distribution governs the deployment environment.
While one might suggest gathering data from the target dis-
tribution, this may be infeasible or ill-defined, especially in
predictive tasks involving the future, such as in causal inference,
performative prediction, or under strategic manipulation, where
present decisions can shape future data-generating processes.

Irreducible uncertainty also arises in multi-agent settings with
conflicting preferences. Arrow’s impossibility theorem [86]
shows that no aggregation rule can reconcile all stakeholders’
utilities while satisfying basic fairness axioms. Here, uncer-
tainty does not stem from data scarcity, but from fundamental
limits on justification and aggregation. The key question, then,
is not how to eliminate uncertainty, but what principles or
rationality axioms should govern decisions—such as treatment
assignment, contract design, or model learning—when uncer-
tainty is unavoidable. This is why I find cooperative game
theory and mechanism design particularly compelling: they
seek principled decisions under irreconcilable constraints. In
my view, such axiomatic approaches offer a robust foundation
for reasoning and acting under structural ambiguity.

3. How to make imprecise probabilities computationally
efficient for ML problems? Imprecise probabilities (IP) offer
philosophically grounded and mathematically rich frameworks
for modelling epistemic uncertainty. However, operationalis-
ing these frameworks in ML poses significant computational
challenges. For instance, representing a belief function over
a discrete space of 1000 labels—as in ImageNet—would re-
quire specifying up to 21000 mass assignments, which is clearly
infeasible. Moreover, many standard tools in probabilistic mod-
elling—such as Monte Carlo and Markov chain Monte Carlo
methods—remain undefined or underdeveloped in the context
of IP. These techniques have long served as a bridge between
abstract probability theory and practical applications in ma-
chine learning. Their absence in the IP setting is a major
bottleneck—but also an opportunity. Advancing computational
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methods for IP will not only equip machine learning with more
expressive and principled tools for handling imprecision but
also contribute deeply to the mathematical foundations of un-
certainty. Bridging this gap promises mutual enrichment for
both communities.

Acknowledgements. I am in debt to all my collaborators and
mentors; without them, my research journey would not have
been possible. I extend a special thanks to Michele Caprio for
his insightful feedback on the original draft.

References
[1] Siu Lun Chau, Jean-Francois Ton, Javier González, Yee
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