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From Probabilistic to Imprecise Probabilistic Machine
Learning

Phase 1: Probabilistic Machine Learning

DPhil Thesis: Towards Trustworthy Machine Learning with Kernels
TL;DR: Methodological developments for kernel embedding of distributions
and Gaussian process modelling, with applications to preference learning and
explainability.

Phase 2: Imprecise Probabilistic Machine Learning

“There is more to uncertainty than probability” (SIPTA): credal sets,
probability intervals, belief functions, possibility measures, Choquet
capacities...
TL;DR: How to integrate these mathematical models into machine learning
pipelines to allow for more explicit appreciation of (epistemic) uncertainty?
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Current research interests:

Foundations of Epistemic Uncertainty in

Uncertainty representation and quantification [Singh et al., 2024]
Measuring uncertainty discrepancy [Chau et al., 2025a]
Validating uncertainty [Chau et al., 2025b, Singh et al., 2025]

Applications of Epistemic Uncertainty in

Economic aspect of machine learning, such as credit allocation, mechanism
design, strategic learning, causal inference, where epistemic uncertainty is not
generally reducible. [Chau et al., 2021, Vo et al., 2024, 2025]
Interpretability under uncertainty [Chau et al., 2023, Adachi et al., 2024]
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Kernels and Reproducing Kernel Hilbert Spaces

Kernel method is any method that endows a generic abstract domain X with
an inner product structure induced by some feature transformation.
Kernel function is as an inner product of features: any function
k : X × X → R for which there exists a Hilbert space H and a map
φ : X → H s.t. k(x, x′) = ⟨φ(x), φ(x′)⟩H for all x, x′ ∈ X .
There exists a canonical feature space Hk, called reproducing kernel Hilbert
space (RKHS), with canonical feature map 7→ k(·, x), where

1 ∀x ∈ X , k(·, X) ∈ Hk, and
2 ∀x ∈ X , ∀f ∈ Hk, ⟨f, k(·, X)⟩Hk = f(x).

Moore-Aronszajin Theorem: every positive semidefinite k : X × X → R is a
kernel of a unique RKHS Hk.
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Kernel Trick and Mean Embedding

implicit feature map x 7→ k(·, x) ∈ Hk

replaces x 7→ [ϕ1(x), . . . , ϕs(x)] ∈ Rs

⟨k(·, x), k(·, y)⟩Hk
= k(x, y)

inner products readily available
▶ nonlinear decision boundaries, nonlinear regression

functions, learning on non-Euclidean/structured
data

[Cortes and Vapnik, 1995,
Schölkopf et al., 1999]

RKHS embedding: implicit feature mean
[Sriperumbudur et al., 2011, Muandet et al.,
2017]
P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk

replaces P 7→ [Eϕ1(X), . . . ,Eϕs(X)] ∈ Rs

⟨µk(P ), µk(Q)⟩Hk
= EX∼P,Y ∼Qk(X,Y )

inner products easy to estimate
▶ nonparametric two-sample, independence,

conditional independence, interaction testing,
learning on distributions

[Gretton et al., 2006, 2007,
Muandet et al., 2012,
Szabó et al., 2016]
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Conditional Mean Embeddings
Consider a joint distribution PXY over random variables (X,Y ) taking values
in X × Y. The conditional mean embedding (CME) of P (Y | X = x) is
defined as

µY |X=x := EY |X=x[ky(·, Y )] =

ˆ
Y
k(y(·, y)dP (y | X = x) ∈ Hky

To model CMEs as functions of x, we can either take an operator
perspective, i.e. define a conditional mean operator (CMO)
CY |X : Hkx

→ Hky
which satisfies µY |X=x = CY |Xkx(·, x),

or take a vector-valued regression perspective, i.e. solve for

µY |X = argmin
F∈Γ

EXY ∥ky(·, Y )− F (X)∥2Hky
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Gaussian Processes

Consider function evaluations f = (f(x1), . . . , f(xn))
⊤ at a set of inputs, and

observations y = (y1, . . . , yn) with

f ∼ N(0,K)

y | f ∼
∏

p(yi | f(xi))
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GP priors on RKHS

Can we formulate a GP model for marginal embeddings µPX
(·) = E[k(·, X)]?

[Flaxman et al., 2016]

Note that the sample paths of a GP with kernel k lie outside Hk with
probability 1 (Kallianpur’s 0-1 law [Jain, 1971] )
A smoother kernel k can be used, e.g.

r(x, x′) =

ˆ
k(x, u)k(u, x′)ν(dx),

then sample paths f ∈ Hk with probability 1 by nuclear dominance
theory [Lukić and Beder, 2001], for any finite measure ν.
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This presentation is based on

Chau, SL*, Shahine Bouabid*, and Dino Sejdinovic. "Deconditional downscaling
with gaussian processes." Advances in Neural Information Processing Systems 34

(2021): 17813-17825.
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Motivation
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Problem Setup

Data
We have a dataset of N bags of high-resolution
(HR) covariates bxj :=

{
x
(1)
j , . . . , x

(nj)
j

}
each

paired with a mediating low-resolution (LR)
variable yj

D1 =
{
bxj , yj

}N

j=1
.

We have a separate dataset of M mediating LR
variables ỹj paired with a LR response of
interest z̃j .

D2 =
{
ỹj , z̃j

}M

j=1
.

x(i)

bx

ỹy

z̃

Figure: Illustration of HR and
LR observations – indirect
pairing
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Problem Setup

Objective

Downscale response z to the HR granularity
level of x(i)

j covariates
i.e. find a function f : X → R which maps
between HR covariates and HR responses.

x(i)

bx

ỹy

z̃

Figure: We wish to learn a
map from HR covariates to an
HR estimate of the response
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Deconditional Formulation

Observation Model
We assume that the HR responses f(x) aggregate into the LR response z̃j as

z̃j = EX [f(X)|Y = ỹj ] + εj

with noise εj ∼ N (0, σ2).

This is similar to the deconditioning problem studied by Hsu & Ramos (2019):

Given an RKHS function g : Y → R, infer an RKHS function f : X → R such
that

g(y) = EX [f(X)|Y = y].

f is called the deconditional mean of g w.r.t. PX|Y .

Hsu and Ramos [2019] develop a deconditioning procedure based on estimating so
called deconditional mean operators and complex chained inference derivations.
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with noise εj ∼ N (0, σ2).

This is similar to the deconditioning problem studied by Hsu & Ramos (2019):

Given an RKHS function g : Y → R, infer an RKHS function f : X → R such
that

g(y) = EX [f(X)|Y = y].

f is called the deconditional mean of g w.r.t. PX|Y .

Hsu and Ramos [2019] develop a deconditioning procedure based on estimating so
called deconditional mean operators and complex chained inference derivations.

Siu Lun Chau Deconditional Kernel Embeddings September 17, 2025 16 / 28



Bayesian formulation for f and g

By placing a GP prior on f ∼ GP(m, k), we can represent the LR field of
responses as

g(y) = EX [f(X)|Y = y] =

ˆ
X
f(x)PX|Y=y(x) ∼ GP(ν, q).

By linearity of expectation, g is also a GP where

ν(y) = EX [m(X)|Y = y]

q(y, y′) = EX,X′ [k(X,X ′)|Y = y, Y ′ = y′] = ⟨µX|Y=y, µX|Y=y′⟩

we call g the conditional mean process.

Estimation of ν and q via conditional mean embeddings using D1.
By joint normality between LR and HR fields, recover a posterior for HR field
f using D2.

Siu Lun Chau Deconditional Kernel Embeddings September 17, 2025 17 / 28



Bayesian formulation for f and g

By placing a GP prior on f ∼ GP(m, k), we can represent the LR field of
responses as

g(y) = EX [f(X)|Y = y] =

ˆ
X
f(x)PX|Y=y(x) ∼ GP(ν, q).

By linearity of expectation, g is also a GP where

ν(y) = EX [m(X)|Y = y]

q(y, y′) = EX,X′ [k(X,X ′)|Y = y, Y ′ = y′] = ⟨µX|Y=y, µX|Y=y′⟩

we call g the conditional mean process.

Estimation of ν and q via conditional mean embeddings using D1.
By joint normality between LR and HR fields, recover a posterior for HR field
f using D2.

Siu Lun Chau Deconditional Kernel Embeddings September 17, 2025 17 / 28



Bayesian formulation for f and g

By placing a GP prior on f ∼ GP(m, k), we can represent the LR field of
responses as

g(y) = EX [f(X)|Y = y] =

ˆ
X
f(x)PX|Y=y(x) ∼ GP(ν, q).

By linearity of expectation, g is also a GP where

ν(y) = EX [m(X)|Y = y]

q(y, y′) = EX,X′ [k(X,X ′)|Y = y, Y ′ = y′] = ⟨µX|Y=y, µX|Y=y′⟩

we call g the conditional mean process.
Estimation of ν and q via conditional mean embeddings using D1.

By joint normality between LR and HR fields, recover a posterior for HR field
f using D2.

Siu Lun Chau Deconditional Kernel Embeddings September 17, 2025 17 / 28



Bayesian formulation for f and g

By placing a GP prior on f ∼ GP(m, k), we can represent the LR field of
responses as

g(y) = EX [f(X)|Y = y] =

ˆ
X
f(x)PX|Y=y(x) ∼ GP(ν, q).

By linearity of expectation, g is also a GP where

ν(y) = EX [m(X)|Y = y]

q(y, y′) = EX,X′ [k(X,X ′)|Y = y, Y ′ = y′] = ⟨µX|Y=y, µX|Y=y′⟩

we call g the conditional mean process.
Estimation of ν and q via conditional mean embeddings using D1.
By joint normality between LR and HR fields, recover a posterior for HR field
f using D2.

Siu Lun Chau Deconditional Kernel Embeddings September 17, 2025 17 / 28



Side track: Application of CMP to Interpretability

In feature attribution problems, we often quantify the importance of a feature
subset S ⊆ [d] at instance x by

ω(S, f, x) = E[f(X) | XS = xS ]− E[f(X)]

1 How to explain Kernel methods with CMEs? [Chau et al., 2022, Mohammadi
et al., 2025a]

2 How to explain Gaussian processes through the (stochastic) Shapley value
formulation? [Chau et al., 2023]

3 How to incorporate GPSHAP for an explainable Bayesian
optimisation? [Adachi et al., 2024]

4 How to turn exact computation of Stochastic Shapley values from
exponential to quadratic? [Mohammadi et al., 2025b]
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Deconditional Posterior

Joint normality between LR and HR field:
The latent HR field f(x) and the observed noisy LR field z̃ = g(ỹ) + ϵ are jointly
normal:[

f(x)
z̃

]
| ỹ ∼ N

([
m(x)
ν(ỹ)

]
,

[
k(x, x) ⟨k(x, ·), CX|Y ℓ(ỹ, ·)⟩Hk

⟨CX|Y ℓ(ỹ, ·), k(x, ·)⟩Hk q(y, y) + σ2

])

Allows to directly obtain deconditional posterior f |z̃ ∼ GP(md, kd) from D2

with:

m̂d(x) = m(x) + k(x,x)A(Q̂+ σ2
M )−1(z̃− ν(ỹ))

k̂d(x, x
′) = k(x, x′)− k(x,x)(Q̂+ σ2

M )−1⊤k(x, x′)

where A := (ℓ(y,y) +NλN )−1ℓ(y, ỹ) with λ > 0, Q̂ := q̂(ỹ, ỹ).

Posterior mean has a form essentially identical to the estimator by Hsu and Ramos
[2019]
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normal:[

f(x)
z̃

]
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Additional Contributions: Convergence rate for DMO

Deconditioning can be formulated as the vector-valued regression of the
operator DX|Y : Hk → Hℓ such that

D⊤
X|Y C

⊤
X|Y f = f ∀f ∈ Hk

Convergence Rate
Assume Hℓ is finite dimensional and place mild assumptions on original spaces, kernels,
RKHSs and probability distributions, which are characterized by parameters b > 1,
c, c′ ∈]1, 2] and ι ∈]0, 1[. Let

Ed(D) = E[∥ℓ(Y, ·)−DCX|Y ℓ(Y, ·)∥2Hℓ
]

the exact regression objective and D⋆ = argminHS(Hk,Hℓ) Ed.

Then if we choose λ = N
− 1

c′+1 and N = M
a(c′+1)

ι(c′−1) with a > 0, we have

If a ≤ b(c+1)
bc+1

, then Ed(D̂X|Y )− Ed(D
⋆) = O(M

−ac
c+1 ) with ϵ = M

−a
c+1

If a ≥ b(c+1)
bc+1

, then Ed(D̂X|Y )− Ed(D
⋆) = O(M

−bc
bc+1 ) with ϵ = M

−b
bc+1
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−a
c+1

If a ≥ b(c+1)
bc+1

, then Ed(D̂X|Y )− Ed(D
⋆) = O(M

−bc
bc+1 ) with ϵ = M

−b
bc+1
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Mediated Downscaling of Atmospheric Temperature

Model RMSE ↓ MAE ↓ Corr. ↑ SSIM ↑

Kriging 8.02±0.28 5.55±0.17 0.831±0.012 0.212±0.011

VBAgg 8.25±0.15 5.82±0.11 0.821±0.006 0.182±0.004

Our method 7.40±0.25 5.34±0.22 0.848±0.011 0.212±0.013

Table: Downscaling similarity scores of posterior mean against HR groundtruth; reports 1
s.d. VBAgg approach from Law et al (2018) also operates on aggregate likelihoods but
cannot handle unmatched data and thus requires to first estimate LR response for each
bag of HR covariates. It can be thought of as a special case of the proposed method
where mediating LR covariate is simply one-hot encoding of the bag.
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Summary

A scalable Bayesian solution to the mediated statistical downscaling problem,
which handles unmatched multi-resolution data.
Combines Gaussian Processes with the framework of deconditioning using
RKHSs and recovers previous approaches as its special cases.
Future challenges: can we integrate this framework to instrumental and
proximal variables problems in causal inference?
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