SIU LUN CHAU, DPHIL

Postdoctoral Researcher at CISPA Helmholtz Center for Information Security

RESEARCH INTERESTS

My research focuses on **Uncertainty** and **Explainability** in machine learning, studying ways to model uncertainty, incorporate them to improve learning, and develop techniques for explaining algorithms and learning through explanations.

EDUCATION

DPhil in Statistical Science | St.Peter's College, University of Oxford

Supervisor: Prof. Dino Sejdinovic, Prof. Mihai Cucuringu, and Prof. Xiaowen Dong.

- Thesis: "Towards Trustworthy Machine Learning with Kernels"
- Published 8 papers with 6 first authored. Selected research contributions include:
 - (Bayesian Kernel methods) Proposed Bayesian Conditional Mean embeddings, Causal Bayesian Conditional Mean Embeddings, and Deconditional Gaussian processes to model uncertainty while learning distributional representations in the RKHS. This resulted in 2 first authored NeurIPS publications.
 - (Explainable Kernel methods) Proposed the first kernel methods specific SHAP-based explanation framework RKHS-SHAP; Extended RKHS-SHAP to model non-parametric preference model and proposed PREF-SHAP. This resulted in 2 first authored NeurIPS publications.

MMATH in Mathematics and Statistics | Lady Margaret Hall, University of Oxford

Supervisor: Prof. Mihaela Van Der Shaar, Prof. Geoff Nicolls

• First Class Honors, ranked 2^{nd} in 4^{th} year and 1^{st} in 3^{rd} year.

WORK EXPERIENCES

 Postdoctoral Researcher | CISPA Helmholtz Center for Information Security, Germany
 Sep.2023 – Present

 Supervisor: Dr. Krikamol Muandet
 Sep.2023 – Present

• Conducted research and supervised students on topics related to uncertainty modelling and explainability:

- (Uncertainty) Proposed a collaborative and explainable Bayesian optimisation framework (accepted for AIS-TATS 2024); Developed an imprecise learning framework for OOD generalisation that allows the model operator to specify their generalisation strategy at test time.
- (Explainability) Developed the first Gaussian process specific SHAP-based explanation framework (accepted for NeurIPS 2023 as spotlight); Studied the strategic behaviour of utility-maximising agents when exposed to model explanations under the causal strategic learning framework (accepted for AAAI 2024 as Oral).

Research Assistant | CISPA Helmholtz Center for Information Security, Germany

• Completed my DPhil thesis while helping PhD students from the Rational Intelligence Lab with their research.

Data Scientist | Ravio (HR Tech Startup), London UK

Project: Job title alignment using LLMs, Compensation modelling

- Utilised pre-trained language models to align heterogeneous job titles across companies for standardisation.
- Developed a tree-based quantile regression with monotonic constraints to model compensations.

Applied Scientist II Intern | Amazon, London UK

Project: Coherent Multi-granularity Forecasting for the Amazon Transportation Service Outbound Network

• Developed deep probabilistic coherent demand forecasting models for the EU transportation network. Solutions developed in and deployed into production-ready AWS infrastructure.

Research Intern | Max Planck Institute of Intelligent System, Tubingen Germany

Project: Interface between Machine Learning and Economics (Supervised by Dr. Krikamol Muandet)

• Researched relaxing restrictive assumptions in Instrumental variable regression and examined potential non-parametric hypothesis testing framework for regression discontinuity designs.

Machine Learning Consultant | Catalyst AI, Cambridge UK

• Worked closely with SDEs to develop forecasting models for clients from fashion tech and agricultural companies.

Mar.2023 – Aug.2023

Dec.2022 – Mar.2023

2018 - 2023

2014 - 2018

i Jun – Dec.2022

Oct.2021 – June.2022

Apr.2019 – Oct.2020

RESEARCH FUNDING AND AWARDS

 AAAI 2024 Oral paper NeurIPS 2023 Spotlight paper Helmholtz Association Postdoc funding EPSRC and MRC Studentship for DPhil in Statistics and Machine Learning Department Prize for FHS Mathematics and Statistics Part B (Top of the year) 	iii Feb iii Dec iii Sep iii	5.2024 c.2023 5.2023 2018 2017
PUBLICATIONS		
14. Domain Generalisation via Imprecise Learning Submitted Anurag Singh, Siu Lun Chau, Shahine Bouabid, Krikamol Muandet		
13. Collaborative and Explainable Bayesian Optimisation AISTATS 2024 Masaki Adachi, Brady Planden, David A. Howey, Krikamol Muandet, Michael A. Osborne, Siu Lun Chau	code	pdf
12. Causal Strategic Learning with Competitive Selection AAAI 2024 (Oral) Kiet Vo, Muneeb Aadil, Siu Lun Chau, Krikamol Muandet	code	pdf
11. Stochastic Shapley values for Gaussian Process Models NeurIPS 2023 (Spotlight, top 3%) Siu Lun Chau, Krikamol Muandet, Dino Sejdinovic	code	pdf
10. Gated Domain Units for multi-source domain generasliation TMLR 2023 Simon Föll [†] , Alina Dubatovka [†] , Eugen Ernst [*] , Siu Lun Chau [*] , Martin Maritsch, Patrik Okanovic, Gudrun M. Buhmann, Felix Wortmann, Krikamol Muandet	code Thäter, J	pdf loachim
9. Towards Trustworthy Machine Learning with Kernels DPhil Thesis Siu Lun Chau		pdf
8. Giga-scale Kernel Matrix-Vector Multiplication on GPU NeurIPS 2022 Robert Hu, Siu Lun Chau, Dino Sejdinovic, Joan Alexis Glaunès	code	pdf
7. Explaining Preference with Shapley Values NeurIPS 2022 Siu Lun Chau*, Robert Hu*, Jaime Ferrando Huertas, Dino Sejdinovic	code	pdf
6. RKHS-SHAP: Shapley Value for Kernel Methods NeurIPS 2022 Siu Lun Chau, Robert Hu, Javier Gonzalez, Dino Sejdinovic	code	pdf
5. Spectral Ranking with Covariates ECML PKDD 2022 Siu Lun Chau, Mihai Cucuringu, Dino Sejdinovic	code	pdf
4. Learning Inconsistent Preference with Gaussian Processes AISTATS 2022 Siu Lun Chau, Javier Gonzalez, Dino Sejdinovic		pdf
3. BayesIMP: Uncertainty Quantification for Causal Data Fusion NeurIPS 2021 Siu Lun Chau*, Jean Francois Ton*, Yee Whye Teh, Javier Gonzalez, Dino Sejdinovic		pdf
2. Deconditional Downscaling with Gaussian Processes NeurIPS 2021 Siu Lun Chau*, Shahine Bouabid*, Dino Sejdinovic	code	pdf
1. Kernel-Based Graph Learning From Smooth Signals: A Functional Viewpoint IEEE 2020 Xingyue Pu, Siu Lun Chau , Xiaowen Dong, Dino Sejdinovic		pdf

INVITED TALKS

•	"Stochastic Shapley values for Gaussian process models" Australian Data Science Network 2023	Dec.2023
•	"Stochastic Shapley values for Gaussian process models" Australian National University	Nov.2023
•	"Collaborative and Explainable Bayesian Optimisation" Data 61 CSIRO Melbourne	Nov.2023
•	"Collaborative and Explainable Bayesian Optimisation" University of Melbourne	Nov.2023
•	"Stochastic Shapley values for Gaussian process models" Australian Institute for Machine Learning	Nov.2023
•	"Stochastic Shapley values for Gaussian process models" ETH Zurich	i Sep.2023

"Stochastic Shapley values for Gaussian process models" | ETH AI Center **i** Sep.2023 "Stochastic Shapley values for Gaussian process models" | Oxford-Man Institute **Sep.2023** • "Explaining kernel methods and preference models with RKHS-SHAP" | CISPA **Feb.2023** "Spectral Ranking with Covariates" | ECML PKDD 2022 **Sep.2022** • "Explainability for Kernel Methods" | ELISE Theory Workshop on ML Fundamentals **i** Sep.2022 "Deconditional Gaussian Processes" | S-DCE Alan Turing Institute seminar **i** Jun.2022 "Explaining Kernel methods with RKHS-SHAP" | UCL Gatsby Unit **A**pr.2022 . "Deconditional Downscaling with Gaussian Processes" | the UCL SML group **Feb.2022** • "Shapley Values for Model Explanations" | Imperial & Oxford StatML seminar **i** Feb.2022 "Uncertainty Quantification for Causal Data Fusion" | the Warwick ML group **ä** Jun.2021 •